计算机服务器

本文介绍多线程环境下并行编程的基础设施。主要包括:

本文简单介绍volatile关键字的使用,进而引出编译期间内存乱序的问题,并介绍了有效防止编译器内存乱序所带来的问题的解决方法,文中简单提了下CPU指令乱序的现象,但并没有深入讨论。     

  • class="wp_keywordlink">Volatile
  • __thread
  • Memory Barrier
  • __sync_synchronize

以下是我搭建的博客地址: http://itblogs.ga/blog/20150329150706/    欢迎到这里阅读文章。

volatile

编译器有时候为了优化性能,会将一些变量的值缓存到寄存器中,因此如果编译器发现该变量的值没有改变的话,将从寄存器里读出该值,这样可以避免内存访问。

但是这种做法有时候会有问题。如果该变量确实(以某种很难检测的方式)被修改呢?那岂不是读到错的值?是的。在多线程情况下,问题更为突出:当某个线程对一个内存单元进行修改后,其他线程如果从寄存器里读取该变量可能读到老值,未更新的值,错误的值,不新鲜的值。

如何防止这样错误的“优化”?方法就是给变量加上volatile修饰。

volatile int i=10;//用volatile修饰变量i
......//something happened 
int b = i;//强制从内存中读取实时的i的值

OK,毕竟volatile不是完美的,它也在某种程度上限制了优化。有时候是不是有这样的需求:我要你立即实时读取数据的时候,你就访问内存,别优化;否则,你该优化还是优化你的。能做到吗?

不加volatile修饰,那么就做不到前面一点。加了volatile,后面这一方面就无从谈起,怎么办?伤脑筋。

其实我们可以这样:

int i = 2; //变量i还是不用加volatile修饰

#define ACCESS_ONCE(x) (* (volatile typeof(x) *) &(x))

需要实时读取i的值时候,就调用ACCESS_ONCE(i),否则直接使用i即可。

这个技巧,我是从《Is parallel programming hard?》上学到的。

听起来都很好?然而险象环生:volatile常被误用,很多人往往不知道或者忽略它的两个特点:在C/C++语言里,volatile不保证原子性;使用volatile不应该对它有任何Memory Barrier的期待。

第一点比较好理解,对于第二点,我们来看一个很经典的例子:

volatile int is_ready = 0;
char message[123];
void thread_A
{
  while(is_ready == 0)
  {
  }
  //use message;
}
void thread_B
{
  strcpy(message,"everything seems ok");
  is_ready = 1;
}

线程B中,虽然is_readyvolatile修饰,但是这里的volatile不提供任何Memory Barrier,因此12行和13行可能被乱序执行,is_ready = 1被执行,而message还未被正确设置,导致线程A读到错误的值。

这意味着,在多线程中使用volatile需要非常谨慎、小心。

volatile关键字

volatile关键字用来修饰一个变量,提示编译器这个变量的值随时会改变。通常会在多线程、信号处理、中断处理、读取硬件寄存器等场合使用。

程序在执行时,通常将数据(变量的值)从内存的读到寄存器中,然后进行运算,此后对该变量的处理,都是直接访问寄存器就可以了,不再访问内存,因为 访存的代价是很高的(这块是访问寄存器还是重新访存加载到寄存器是编译器在编译阶段就决定了的)。但在上述说的几种情况下,内存会被另一个线程或者信号处 理函数、中断处理函数、硬件改掉,这样,代码只访问寄存器的话,永远得不到真实的值。

   

对这样的变量(会在多线程、线程与信号、线程与中断处理中共同访问的,或者硬件寄存器),在定义时都会加上volatile关键字修饰。这样编译器 在编译时,编译出的指令会重新访存,这样就能保证拿到正确的数据了。但这里需要注意的是,编译器只能做到让指令重新访问内存,而不是直接使用寄存器中的 值,这些和缓存没有关系,具体执行时指令是访问内存还是访问的缓存,编译器也无法干预。

   

另外,除了使用寄存器来避免多次访存外,编译器有时可能直接将变量全部优化掉,使用常数代替。比如:

int main()
{
    int a = 1;
    int b = 2;

    printf("a = %d, b = %d n", a, b);
}

   

编译器可能直接优化为:     

int main()
{
    printf("a = %d, b = %d n", 1, 2);
}

   

  如果对ab的声明加了 volatile关键字,编译器将不在做这样的优化。

             

还有,对所有volatile变量,编译器在编译阶段保证不会将访问volatile变量的指令进行乱序重排。

    

   

__thread

__threadgcc内置的用于多线程编程的基础设施。用__thread修饰的变量,每个线程都拥有一份实体,相互独立,互不干扰。举个例子:

#include<iostream>  
#include<pthread.h>  
#include<unistd.h>  
using namespace std;
__thread int i = 1;
void* thread1(void* arg);
void* thread2(void* arg);
int main()
{
  pthread_t pthread1;
  pthread_t pthread2;
  pthread_create(&pthread1, NULL, thread1, NULL);
  pthread_create(&pthread2, NULL, thread2, NULL);
  pthread_join(pthread1, NULL);
  pthread_join(pthread2, NULL);
  return 0;
}
void* thread1(void* arg)
{
  cout<<++i<<endl;//输出 2  
  return NULL;
}
void* thread2(void* arg)
{
  sleep(1); //等待thread1完成更新
  cout<<++i<<endl;//输出 2,而不是3
  return NULL;
}

需要注意的是:

1,__thread可以修饰全局变量、函数的静态变量,但是无法修饰函数的局部变量。

2,被__thread修饰的变量只能在编译期初始化,且只能通过常量表达式来初始化。

  指令乱序

那么什么是指令乱序,指令乱序是为了提高性能,而导致的执行时的指令顺序和代码写的顺序不一致。指令乱序有编译期间指令乱序和执行时指令乱序。

执行时指令乱序是CPU的一个特性,这块比较复杂,不再这里提及。我们只需要知道在x86/x64的体系架构下,程序员一般不需要关注执行时指令乱序(不需要关注不代表没有)。

编译期间指令乱序是指在编译成二进制代码时,编译器为了所谓的优化进行了指令重排,导致二进制指令的顺序和我们写的代码的顺序是不一致的。

比如以下代码:

int a;
int b;

int main()
{
    a = b + 1;
    b = 0;
}

会被优化成(实际上在汇编阶段进行的乱序优化,优化后的代码也只能以汇编的方式查看,这里只是拿C代码举例说明一下):

int a;
int b;

int main()
{
    b = 0;
    a = b + 1;
}

对加上volatile关键字的变量的访问,编译器不会进行指令乱序的优化,保证volatile变量的访问顺序和代码写的是一样的。比如如下代码不会优化:

volatile int a;
volatile int b;

int main()
{
    a = b + 1;
    b = 0;
}

   

但是以下代码,依然会乱序,因为编译器只是保证volatile变量访问的顺序,对于非volatile变量之间,以及volatile以及非volatile变量之间的顺序,编译器还是会优化。

int a;volatile int b;int main(){    a = b + 1;    b = 0;}

   

       

其他新闻
  • 要说互联网上长久的项目,原创公众号算一个,但别忽略了网站,毕竟做了十年以上的草根站长,不在少数,每年轻松赚百万。 有人说做SEO不赚钱,而实际上只要你选对了项目,就算你...
    2020-03-17
  • 熊掌号是个什么东西,对于自媒体而言,这是一个类似微信公众账号的平台,只是在百度APP下才能运行,对于网站站长来讲,这是一个可以帮助你解决网站收录以及排名的良好工具,那...
    2020-03-17
  • 做为一位SEOer都知道百度前三的网站占据了80%的流量,所以每一位seo人员都是希望自己的网站能够是第一名或者是可以进入百度前三名,那么我们的网站凭什么可以进入百度前三呢? 很...
    2020-03-17
友情链接

公司名称巴黎人电玩
版权所有:Copyright © 2015-2019 http://www.zhongqiangjy.com. 巴黎人电玩有限公司 版权所有

友情链接

Copyright © 2015-2019 http://www.zhongqiangjy.com. 巴黎人电玩有限公司 版权所有
公司地址http://www.zhongqiangjy.com